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SUMMARY 

I 

. 

This note presents the results of a ser ies  of axial-load, constant 
amplitude fatigue tes ts  at zero  mean s t r e s s  on oxygen-free, high- 
conductivity (OFHC) copper specimens. 
tested at four s t ress  levels near the lower "knee" of the S-N curve. 

A total of 631 specimens were 

The log-normal (Gaussian) and the Weibull (Extreme Value) 
distribution functions were fitted to the complete sample of test endurance 
data at each of the four stress levels. 
distribution functions and a combination of a log-normal and a Weibull 
distribution function were a l so  applied since at all s t r e s s  levels a two 
mode single, o r  bimodal distribution representation appeared feasible. 

A combination of two log-normal 

The main results of this study are:  

1. 
endurance distributions was indicated by (a) the apparent bimodality in the 
endurance histograms, (b) the significantly different values of the standard 
deviations of the low-endurance and high endurance components respec - 
tively, and their consistency w i t h  stress level, and (c) by the consistent 
variations in the parameters of the low-endurance log-normal component 
distributions as determined by the truncation method. 

At all four s t ress  levels tested, the existence of two modes in the 

2. 
stress level. 

The overall standard deviation w a s  found to be largest  for the highest 

3. 
endurances at each stress level but also for the high-endurance compon- 
ents at all stress levels. 

The single Weibull distribution function gave the best f i t  not only for the 

4. 
functions were obtained by the upper vertical moment rather than the 
classical moment method. 

The better estimates for the parameters  of the Weibull distribution 
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INTRODUCTION - I. 

The large scatter observed in fatigue endurances of nominally 
identical specimens subjected to nominally identical load cycles has lead 
to the recognition of fatigue failure as a statistical phenomenon. 
of the scatter can be attributed to random variations and e r r o r s  in the 
applied loads, to inherent inaccuracies (e. g. alignment) in the fatigue 
machine, and to non-uniform test conditions (environmental changes) and 
test procedures. Variations in specimen properties, surface conditions, 
dimensions and geometry due to manufacturing tolerances and processes,  
a lso contribute to this type of scatter. 
ial properties affect the endurance scatter. 
rication history (heat treatment and cold work pr ior  to testing); grain 
size and orientation; submicroscopic defects such as inclusions, vacancies, 
lattice stacking faults,  dislocation density, etc. 

Some 

Furthermore, a number of mater- 
For example, material fab- 

Because of this scatter, constant amplitude fatigue resul ts  can 
be effectively presented only by a relation between the s t r e s s  of amplitude 
S, the endurance N, and the probability P that any specimen subjected to 
a given number of load cycles of the s t r e s s  amplitude S wi l l  fail at o r  
before N cycles a r e  reached. 
fatigue loading it is (for practical and economic reasons) not feasible to 
design for  zero probability of failure, and usually a very small but finite 
r i sk  of failure must be assumed. 
on which this r isk is based, is thus of great importance for the designer. 

For  a structural  element subjected to 

The accuracy of the probability function 

In the analysis of constant s t r e s s  amplitude fatigue tes t  results, 
several  distribution functions have proven useful  in representing the tes t  
endurance data. Perhaps the best known is the log-normal o r  Gaussian 
which assumes the log of the number of cycles to failure to be normally 
distributed. This distribution, and others such as the extreme value 
distribution, f i t  the data wel l ,  especially near the mode of the distribution. 

Usually the best fit of constant amplitude test data to any parti-  
cular  type of distribution is found at high s t r e s s  levels. At the "knee" of 
the S-N curve, the scatter seems to be la rger  and extrapolation into pro- 
bability ranges not covered by test data becomes quite dubious. 
s t r e s s  range, also a discontinuity in the S-N curve has been reported. 
(Refs. 1, 2 and 3). 

In this 

Certain observations of a large scatter and discontinuity at  the 
knee of the S-N curve have been interpreted by Swanson (Refs. 4 and 5) 
and Cicci (Ref. 6) as being the result  of a blending of two endurance distri-  
butions caused by two coexisting failure mechanisms. 
causing fa i lure  above the knee, the other one below it. The knee itself is 
the transition region characterized by the gradual decay in probability of 
occurrence of the one failure mechanism and the growth of the other. 
Thus, according to this concept, at any s t r e s s  level within the transition 
region a compound failure probability exists due to the component failure 

One is predominantly 
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probabilities f rom the two mechanisms. 

Also from a metallographic point of view, there a r e  reasons 
for considering the knee a s  a transition region. W. A. Wood (Ref. 7) has 
on the basis of observed fatigue -induced microstructural differences 
divided the generalized S-N curve into three strain amplitude ranges, H, 
F and S. 
s t ress ,  in the F or intermediate range, a small reduction in s t r e s s  
amplitude gives a very large increase in endurance, and in the S o r  
pseudo-safe, low s t r e s s  range, the endurances approach infinity. Thus, 
the knee can be considered as a transition region where each s t r e s s  level 
is characterized by the amount of H , F  and S-type fatigue damage present 
in the microstructure. 

In the H range, endurances increase only slightly with decreasing 

The present investigation was undertaken to check the existance 
of bimodal endurance distributions on a sound statistical basis. 
of alloys, for which some evidence exists (Ref. 5), OFHC copper w a s  
chosen a s  the test  material. 
tested at each of four s t r e s s  levels around the lower knee of the S-N curve 
under axial, constant amplitude loading. 
of its simple and clean microstructure which is well suited for a subse- 
quent metallographic examination of the failed specimens. (see Ref. 8) 

Instead 

At least  150 specimens were to be fatigue 

OFHC copper was chosen because 

I1 MATERIAL, APPARATUS AND TEST PROCEDURE 

2 .1  Specimen material: 

The material used for this se r ies  of tes t s  was certified OFHC 
copper of 99.95'70 + purity. 
(Canada) Ltd. in the half-hard cold drawn state in the form of 3/4" dia., 
12 ft. long rods. 

The copper was supplied by Anaconda Co. 

The rough-machined specimens were annealed for two hours 
at 1050°F in a vacuum of 0.025 mm Hg in batches of 200. 
they were fine machined to final dimensions (Fig. 2). 

After machining 

To check the uniformity of the heat treatment and to obtain 
samples of the mechanical properties, seven control specimens were 
picked out at random from each batch. These specimens were tested in 
an Instron tensile testing machine and their mechanical properties a r e  
listed in Table I. 
resulted in some difficulties in the tensile tes ts  and may account for the 
comparatively large scatter in the tes t  results. 

The specimens were found to be extremely soft. This 

While the annealing process provided complete s t r e s s  relaxation 
of the specimens, the annealing temperature and time were insufficient to 
bring about a complete recrystallization. Figure 1 shows a micrograph 
of the core of an untested specimen. 
by a large variation in grain size and the presence of a number of partly 

The grain structure is characterized 
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recrystallize d grains . 
The final machining caused the formation of a work-hardened 

layer at the surface. The depth of this layer, about 0. 01 inch, w a s  some- 
what larger than expected. 

. 
Because of the large number of specimens involved the annealing 

and machining of the specimens had to be done outside the University and 
the conditions under which these processes were performed could there- 
fore  not be controlled as carefully as desirable. 

2 . 2  Specimen Configuration and Preparation: 

The shape and dimensions of the fatigue specimens a r e  given 
in Fig. 2.  
section the curvature at the fillets a s  shown was adopted. 
strain analysis (Ref. 9) has shown that this curvature practically eliminates 
sharp s t r e s s  gradients. 

To avoid s t r e s s  concentration at  the ends of the parallel test  
Photoelastic 

Due to warping of the specimens during annealing the machining 
was done in two stages. 
all diameters 0. 025 in. oversize. 
end so that the specimens could be annealed in the hanging position. 
annealing the final machining w a s  done by taking passes  of 0. 0025 in. 
depth at a feed of only 0. 002 in. per revolution. 

First the specimens were rough machined leaving 

A f t e r  
A hole was drilled and tapped in one 

The specimen dimensions were measured pr ior  to testing 
using an optical comparator. 
at three locations, at  each end and at midlength. 
measured at the same locations. 
fillets were consistently smaller by about 0. 001 in. than those measured 
at midlength. 
used in the machining. The loads used in testing were always calculated 
using the smallest cross -section diameter. 
exceeding I/ 1000 in. (measured at  midlength) were rejected. 

The tes t  section diameter was measured 
The eccentricity was 

It was found that the diameters at the 

This was most likely due to a slight undercut on the template 

Specimens having eccentricities 

2. 3 The Fa t ime Machine: 

The machine used f o r  this investigation w a s  of a patented type 
(Ref. lo) ,  the driving force being supplied by an electromagnetic shaker 
of 25 lbs. maximum load capacity. A schematic diagram of the machine 
is shown in Fig. 3 and a photograph of the machine and its instrumentation 
is shown in Fig. 4. 

The dynamic system consists of the shaker, (see Fig. 3 and 
5b), a lever hinged at one end by crossed flat steel springs, the load- 
transmitting vertical springs which also serve as load dynamometor (the 
springs a r e  strain-gauged) and the lower (moving) gripping head. 
lower head is mounted on parallel springs which allow movement in the 

The 
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vertical direction only, without rotation of the head. The upper gripping 
head is rigidly connected to the machine structure. 
in the vertical direction in order to turn the lever to a reference position 
after the specimen w a s  clamped in the grips. 

It w a s  made adjustable 

The gripping arrangement is also shown in Fig. 5a. 
a r e  standard "rubber-flex" collets with wedge -shaped hardened steel 
plates which have been hook-serrated to give firm gripping action. 
insert  a specimen the sliding block (see Fig. 5a) is pushed back and the 
specimen is lowered into the collet. 
tightened until the specimep is firmly gripped. Returning the sliding 
block, the back-up pin is tightened against the end of the specimen. By 
alternately tightening the collet compression disk and the back-up pin, the 
specimen is firmly clamped and able to withstand both tension and com- 
pression axial dynamic loading, without slipping in the grips. The gripping 
heads, which a re  free to move during the gripping procedure, a r e  then 
moved to and locked in their reference position. 
ment has proved very satisfactory. 
evidence of slipping of the specimen in the grips. 

The grips 

To 

The collet compression disk is then 

This gripping arrange- 
In none of the tes ts  w a s  there any 

The input signal to the shaker was an amplified sine-wave from 
an audio oscillator. 
lever system w a s  approximately $0 cps. The maximum alternating load 
amplitude obtained with a copper kpecimen w a s  about 1000 lbs. 
added weights (24 lbs) attached to the lever,  the maximum load could be 
increased to about 1100 lbs. ,  however, the resonant frequency was then 
reduced to about 57 cps. 
s t r e s s  level (16. 5 ksi) used in this program. The reduction in frequency 
is not considered to have a significant effect on the fatigue properties, as, 
concluded by Stephenson in Ref. 11. 

The resonance frequency of the specimen-shaker- 

With 

The weights had to be used for the highest 

The signal from the dynamometer strain gauges was amplified 
by a bridge pre-amplifier and measured by an electronic voltmeter. 
dynamic component of the signal w a s  used to drive a photo-electric controller 
with two cut-out points. The high point w a s  used to switch on a warning light 
when the load dropped below a preset  value. 
energized the main power supply relay (for the shaker amplifier and certain 
instruments) and thus served a s  a shut-off device. The total number of 
cycles to fa i lure  was  recorded by an electronic counter operating on the 
oscillator signal. 
wall clock in the controller circuit. This provided a rough check on the 
counter since the number of cycles to failure could be calculated, i f  necess- 
ary,  f rom the total testing time and the frequency. 

The 

The low cut-out point de- 

The testing time was measured by an ordinary electric 

2. 4 Machine Calibration: 

A special calibration specimen w a s  made up from 7075-T6 alum- 
inum alloy. The middle portion of this specimen was square-sided with 
a 0. 45 x 0. 45 in. cross-section while the cylindrical gripping ends were 
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of the same diameter a s  the gripping ends of the fatigue specimens. 
opposite faces were strain gauged, the gauges being wired in a Wheatstone 
bridge to measure longitudinal strains only. 

Two 

The calibration specimen w a s  first calibrated in a Tinius Olsen 
tensile testing machine using a strain indicator. Then the specimen w a s  
placed in the fatigue machine and the load dynamometer calibrated stati- 
cally, using the mean s t ress  spring to apply load to the specimen. 

In the dynamic load calibration a load monitoring system, con- 
sisting of an oscilloscope, a strain indicator and a bridge pre-amplifier 
w a s  used. 
output, the load being set up with the calibration specimen and the strain 
indicator. 
was  made equal in magnitude to the previous static signal. 
the oscilloscope with the machine running, the p r e  -amplifier -voltmeter 
circuit was connected to the dynamometer and the load calibration for 
the voltmeter w a s  obtained. 

First the oscilloscope w a s  calibrated statically using the bridge 

Starting the machine and adjusting the load, the dynamic signal 
Disconnecting 

2.5 Machine Accuracv : 

Since this investigation was aimed at determining the endurance 
distributions as a material property, great care w a s  taken during assembly 
and calibration of the machine to avoid random e r r o r s  resulting from 
inaccuracies in the machine and load-measuring devices. 

An inherent source of e r r o r s  in axial-load fatigue machines is 
the gripping arrangement. 
introduce large e r rors .  
2 up to 20 per cent have been measured (R.ef. 12). 

Slightly inaccurate alignment of the grips will  
For commercial machines, e r r o r s  ranging from 

For the final alignment of the grips, a strain-gauged steel 
specimen with a square cross-section between the grips w a s  made. 
strain gauges were mounted on all four faces, and those on opposite faces 
were wired in pa i r s  in a Wheatstone bridge to measure bending strains 
only. One set consisting of two pa i r s  of gauges was  mounted vertically 
at each end of the free-length portion of the specimen thus making it 
possible to take readings of the bending strain at two points in each of two 
vertical planes at right angles to each other. 
gripping head completely loose, the specimen w a s  gripped at both ends 
and the lower head w a s  adjusted to minimize the bending strains. 

The 

With the machine's lower 

It w a s  found, however, that in spite of alignment to better than 
An analysis of 

While this 

1/1000 in., strains could not be completely eliminated. 
the effect of residual misalignment on the s t r e s s  in the test piece w a s  
carr ied out (Appendix E) using the residual strain readings. 
analysis shows that the resulting s t r e s ses  in the fatigue specimen are 
still appreciable, it is emphasized that this type of e r r o r  is constant for 
all specimens tested at the same s t r e s s  level and should therefore not 
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affect their endurance distribution. 

A complete analysis of the possible e r r o r s  in dynamic load is 
very complex and was not carr ied out in detail. 
of an assessment of the accuracies of the individual instruments involved, 
it is estimated that the maximum e r r o r  in dynamic load is of the order  of 
about 1. 570. This is confirmed qualitatively by the data obtained from the 
tes ts  at the two lowest s t r e s s  levels, 13. 0 ksi  and 12. 7 ksi. Although the 
spacing of these s t r e s s  levels is only about 2. 470 of the s t r e s s  amplitude, 
there is a significant difference in the mean endurance. 

However, on the basis 

2. 6 Test Procedure: 

Particular care  was taken in the operation of the machine to 
keep experimental errors '  to a minimum. After insertion in the machine 
a mark w a s  placed on the specimen near the lower grip to facilitate later 
a crack position correlation with the position of the specimen in the 
machine. 

In nearly all tests, the crack initiated at the same location on the 
specimen, namely at the front of the lower fillet. 
for this. First, it was found that the slight undercut in the test section 
diameter was always located at this lower fillet. 
tions carried out in Appendix E show that the largest  bending strain due 
to misalignment of the grips w a s  present at the front of the lower fillet. 
The other maximum value of the bending strain occurred at the back of 
the top fillet and this w a s  where the crack started on those f e w  specimens 
that did not fail at the lower fillet. 

Two factors accounted 

Secondly, the calcula- 

Since uniformity of the specimens within a group tested at the same 
s t r e s s  level w a s  considered of greater importance than uniformity between 
specimens tested at different s t r e s s  levels, it w a s  decided to use at each 
stress level specimens from one heat treatment batch only. 

P r i o r  to each test the bridge pre-amplifier and the electronic 
voltmeter were zero-checked and calibrated. 

During the first 3 minutes of each test  it w a s  found necessary to 
reduce the power input to the machine continuously because of extensive 
work-hardening in the specimen. During this period of 10,000 - 12,000 
cycles, the resonant frequency also changed slightly. After the starting 
period the load had to be re-adjusted (slightly upward) at intervals of 
approx. 15 min. for the higher stress levels while at the lower s t r e s s  
levels, similar load adjustments were necessary only every 2-3 hours. 

The amount of heat produced in the fatigue specimens due to 
energy dissipation at the higher stress levels w a s  quite noticeable. 
obtain some idea of the temperature increase in the specimen, a thermo- 
couple w a s  attached to the test  section of some of the specimens and the 

To 
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temperature recorded continuously throughout the test. 
these measurements is found in Appendix F. 

A description of 

2. 7 Environmental Conditions: 

All t es t s  were done at room temperature and uncontrolled room 
Since the laboratory in which the fatigue machine w a s  located humidity. 

is surrounded by other rooms and has no direct openings to the outside, 
and since the bulk of the testing was done at a time of the year when indoor 
heating w a s  used, relatively small variations in humidity and temperature 
were recorded. Fig. 6 shows a typical plot of temperature and humidity 
versus  log (cycles to failure). While no correlation is apparent between 
temperature and endurances, there is a slight correlation favouring low 
endurances at  high values of relative humidity. 

111. THE DISTRIBUTION FUNCTIONS 

In the interpretation of fatigue data the endurances a re  usually 
assumed to be distributed in such a manner as to form a single distri- 
bution. The assumption of more than one fai lure  mechanism operating 
at any one s t r e s s  level and causing the endurances to group around charac- 
ter is t ic  mean values for each mechanism, leads to the concept of a heter-  
ogeneous endurance population, i. e. an endurance distribution containing 
two or more modes. 

The test  endurances are  plotted in histograms (Fig. 7) using a 
c lass  length of 0. 01 log N. 
level, show a dip or llvalleyl' to the left of the peak of the distribution. 
Assuming that the secondary peak to the left is significant, it could be 
interpreted a s  evidence for a two-mode or bimodal distribution (schema- 
tically indicated by dashed lines in Fig. 7). 

All  plots, except the one for the lowest s t r e s s  

Two types of distribution functions were considered for best fit 
to the overall test  endurance distributions, namely the log-normal or 
Gaussian, and the Weibull (Extreme Value). 
normal distributions and (b) a log-normal and a Weibull distribution 
function were also applied at all s t r e s s  levels. 

Combinations of (a) two log- 

Appendix A, B and C give the theoretical background for the 
calculation of the parameters  for the single (undivided) and truncated 
distribution functions of the two types used. 

IV. ANALYSIS OF RESULTS 

4. 1 The Control Tensile Specimens: 

The arithmetic mean and standard deviation of the various pro-  
per t ies  w e r e  calculated by the standard formulae. 
in Table I. 

The results a r e  listed 



The true mean will  l ie between the l imits 

where t 
of confidence required, 
the interval x + t, s /c contains 
(Ref. 21). 
properties in Table I. 

depends on the number of values measured, n, and the degree 
Choosing 0C = 9570, i. e. the probability that . 

is 9570 resul ts  in t d  = 2. 04 
The9570 confidence l imits are given for the more important 

4.2 Single Log-Normal Distribution: 

Considering the test endurance distribution to be a single log- 
normal distribution, the parameters  x and s were calculated, using the 
standard formulae given in the Notation. 
Table 111. 
as single distributions on log-normal probability paper in Fig. 8. 
the method of least  squares a linear regression w a s  carr ied out on the 
relation between ranked endurances and probability. 
the plots a r e  the regression lines. 
each case on the plots. 

These parameters  are listed in 
The endurance data for  the four test  s t r e s s  levels a r e  plotted 

Using 

The solid lines on 
The correlation coefficient is given in 

The slopes of the regression lines and the standard deviation in 
Table I11 show that the variance of the distribution for the lowest s t r e s s  
level (12. 7 ks i )  is less than that at the highest stress level, while the 
variances for the two other s t r e s s  levels have intermediate values. 
is rather unusual; instead of increasing scatter with decreasing s t r e s s  as 
one conventionally expects, at least  for alloys, the scatter of the endurances 
in the present results varies in a rather unconventional manner from one 
s t ress  level to another. 

This 

The probability plot for the 16.5 ksi  s t r e s s  level shows that the 
endurances fit very closely to the single distribution regression line. 
random manner with which the points a r e  scattered about this line seems 
to suggest that the sample is drawn from a single normal population. 

The 

The test data for the intermediate stress levels (14. 0 and 13. 0 ksi) 
do not f i t  as w e l l  to a straight line and there is an orderly trend in their 
deviation from the regression line which, however, can also be detected 
at the 16. 5 k s i  stress level. 
3070, the curves for all three levels a r e  scattered about a line (dashed line) 
with a lower slope than the regression line. Above 3070 probability there 
is a transition region up to about 4070, above which the points seem to f i t  
closely to another straight line (dashed in Fig. 8. ). This line is steeper 
than the regression line. 
interpretation of the two dashed lines implies that there could be two com- 
ponents in the endurance distribution fo r  each of the three s t r e s s  levels, 
the par t s  below 3070 probability of failure having a smaller variance than 
those above, demonstrated by the difference in slope. 

Below a probability of failure of approximately 

Both dashed lines were fitted visually. The 

The heterogeneous 
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nature of the three samples is also demonstrated by the histogram plots 
of the fatigue endurances in Fig. 7, which exhibit a double "hump" for 
the three highest stress levels and a degenerate form of bimodality at the 
12.7 ksi  level. 

The probability plot for  the 12.7 ksi  s t ress  level (Fig. 8) shows 
that the endurances fit the regression line rather poorly. 
they follow a smooth curve better than the two dashed lines. This may be 
taken as an indication that the lower bound of the distribution is non-zero 
and that a three-parameter distribution function is required, (Ref. 12) ,  to 
represent the test endurances best. This is confirmed by the cumulative 
frequency plot for this s t r e s s  level (Fig. 9),  where the data fit the single 
log-normal distribution curve poorly, except in the high-endurance part. 
(h Fig. 9 the curves for the two Weibull distribution functions a r e  drawn 
for comparison. It should be noted, however, that these distribution 
functions were calculated for the distribution of N (cycles), not log (N),  
which is the abscissa in Fig. 9. 
where for these distribution functions do therefore not apply to Fig. 9). 

But note that 

The correlation coefficients given else- 

4. 3 Single Weibull (Extreme Value) Distributions: 

4. 3. 1 Classical Moment Method- 

Following the procedure in Appendix B, the estimate of the skewness 
parameter w a s  calculated from Eq. B. 8 using the University of Toronto 
IBM 7090/7094-11 computer. Using Table I in ref. 13 the parameters b, 
A(b), and B(b) were  found and No and V were calculated from Eqs. B. 11 
and B. 10 respectively. 
car r ied  out and the data plotted on extreme value probability paper, using 
the plotting position of Eq. D. 8. These plots are shown in Fig. 10, with 
the values of the parameters,  No, and the correlation coefficients, r, 
given in each case. 
are listed in Table IV. 

With these values a regression analysis w a s  

All the Weibull parameters and correlation coefficients 

The way the experimental points in Fig. 10 a r e  scattered about the re- 
gression lines shows that the estimates of the parameters  are quite good. 
For instance, the effect of an incorrect estimate of No is to bend the 
curve away from the regression line at the tails of the distribution. 
overall correlation coefficients a r e  in all cases, except the lowest stress 
level (12. 7 ksi), smaller than those for the log-normal representation, 
but the differences a r e  very small. 

The 

4. 3. 2 Method of Umer  Vertical Moments - 

Using the procedure outlined in Appendix C the parameters  b, No and V 
were calculated from Eqs. C. 11, C. 12 and C. 19, respectively, using 
Eqs. C. 14 and C. 15 to estimate the upper vertical moments. The values 
of these parameters differ somewhat from those obtained by the classical 
moment method, but the differences are small considering the large 
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influence which small numerical variations in the xr 
parameters. The difference in the shape of the frequency distribution 
functions for the upper vertical moment method as compared with those 
obtained by the classical moment method is also small, as demonstrated 
in Fig. 12. 

values have on the 

The parameters No, and the correlation coefficients, obtained by a r e -  
gression analysis identical to that in the preceding section, a r e  listed in 
Table V. It is seen that the estimates of the parameters  of the Weibull 
distribution functions by the method of upper vertical moments give cor re-  
lation coefficients which in all cases  a r e  higher than those for the log-normal 
distribution, and also higher than those calculated by the classical moment 
method. 
ances to the regression lines. 

This is further illustrated in Fig. 11 by the close f i t  of the endur- 

4. 4 Two Log-Normal Distributions : 

In representing the endurance data at one s t r e s s  level as a com- 
bination of two distribution functions, the problem of dissection of the 
endurance distribution a r i s e s  since the components obviously are over - 
lapping (see Fig. 7). The method used here is to calculate the two se ts  
of parameters, using only the tail ends of the combined distributions, i. e. 
to truncate the data so that only the observations above and below the 
overlap region a r e  used for the determination of the parameters.  Assuming 
the tail ends to be pa r t s  of normal distributions, one should find that after 
some initial variation in the estimated parameters  for small  samples, the 
parameters  should approach stable values as the truncation point is approa- 
ching the centre of the undivided distribution. 

Using the procedure outlined in Appendix A., the parameters  x 
and s were calculated taking as the truncation point X t r ,  the arithmetic mean 
of the logarithms of two adjacent endurances of the last (or first,  depending 
on which tail end is considered) endurance in front (or  behind) and the first 
(or last) endurance in the overlapping region. Using the IBM computer it 
w a s  possible to calculate and s for a wide choice of truncation points, in 
fact for nearly all endurances with the exception of the extreme tail ends. 
The calculated parameters  a r e  plotted versus the number of specimens in 
the truncated sample, ntrL for the low-endurance part  in Fig. 14. 
comparison the values of x and s calculated for the single log-normal 
distributions representing all endurances at each s t r e s s  level a r e  indicated 
on the graphs. 

For 

The large, apparently random variations in the parameters  for the 
lowest s t ress  level, 12.7 ksi, show that the sample is very irregular and 
the truncated log-normal distribution in this case is very unreliable for 
the estimation of the parameters. 
levels, however, show a trend. 
for small values of ntr, a region is reached in which there is an abrupt 
drop in the values of the parameters,  corresponding to  the dip in the histo- 

The results for the three highest s t r e s s  
After initially large variations of x and s 
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gram plots in Fig. 7 and to the jog in the probability curves in Fig. 8. 
After this drop the parameters increase in a more o r  l e s s  uniform manner 
to reach the values of the parameters for the single log-normal distributions 
a s  upper limits (see Fig. 14). 

Assuming this abrupt drop to indicate the extent of the predomin- 
ance of the STF component mode the corresponding total number of 
specimens in the STF mode were estimated by taking twice the number - of 
specimens the endurances of which were lower than that for the mean, x , 
specified by the drop. These estimates of the STF parameters and the 
number of specimens in each STF mode a re  given in Table VI. In the 
histograms the STF (shaded) component represents approximately the 
value of ntr  corresponding to the chosen values of x and s, except for the 
12. 7 ksi  case in which the STF component w a s  estimated from the histo- 
gram. 
histograms) is plotted for the top three s t r e s s  levels on log-normal pro- 
bability paper (Fig. 16) taking the total cumulative probability for each 
STF mode equal to unity. The plots show that the low-endurance (STF) 
component is well represented by a log-normal distribution. 

The number of specimens in the STF component (shaded part  in the 

Although the histograms show that the STF components in some 
cases  a re  slanted to the right (toward the high-endurance part), it w a s  not 
attempted to represent the STF components also by a Weibull distribution 
since the skewness to  the right implies an upper bound, a maximum life" 
rather than a minimum life parameter, thus contradicting the underlying 
assumptions for the extreme value distributions (the ''weakest link" concept). 
The apparent skewness could be explained by the fact that the component 
distributions are strongly overlapping. 

1 1  

The parameters obtained by considering the high-endurance tail 
end truncated (i. e. known) a re  plotted in Fig. 15. Only the two intermediate 
stress levels a r e  considered. In the case of the 14.0 ksi  s t r e s s  level, 
there is an abrupt drop similar to that observed in Fig. 14b for the low- 
endurance case, when the sample comprises about 90 specimens. This 
drop corresponds to the discussed dip in the histogram of Fig. 7c, but the 
value of x in this region is so low that it gives the estimated number of 
specimens in the L T F  distribution at about 170, a number which is larger  
than the number of specimens tested at this stress level. At the 13.0 ksi  
level the parameters vary in such a manner that a clear indication of the 
L T F  range extent cannot be obtained. 
stress levels showed a similar behaviour. 
skewness to the left of the LTF distribution which the histograms show, 
suggest that a representation of the LTF component by a log-normal distri- 
bution would give a very poor fit. 
components at all s t r e s s  levels were therefore not plotted on log-normal 
probability paper and no regression analysis w a s  carr ied out. 

The plots for the highest and lowest 
These results, and the obvious 

The endurance data for the high-endurance 
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4. 5 Combined Log-Normal and Weibull Distributions : 

Using the same log-normal distribution functions a s  calculated in 
the preceeding section to represent the STF components, the Weibull 
distribution functions for the high-endurance components were calculated 
using the upper vertical moment method. 
for a range of truncation points and regression w a s  car r ied  out in each 
case. 
cient was chosen and the resulting distributions a r e  plotted on extreme 
value probability paper in Fig. 17. 
given on the graphs together with the correlation coefficients. It is seen 
that the f i t  is not as good as in the single Weibull (upper vertical moment 
method) presentation. (Fig. 11). 

The parameters  were computed 

The degree of truncation which gave the highest correlation coeffi- 

The values of the No parameters  is 

The standard deviation for both N and log N were calculated for 
the L T F  component using the formula given in the Notation. 
used were all those greater than No. The values of the standard deviations 
and the parameters of the L T F  Weibull components are listed in Table VII. 

The endurances 

A S-N curve showing the endurance scatter ranges, the means of 
the (log-normal) STF and the (Weibull) L T F  modes a s  well as the means 
of the Weibull single distributions is shown in Fig. 13(a). 

The standard deviations for the STF and LTF modes and for the 
single distributions a re  plotted in Fig. 13(b). 
deviations for the STF and LTF modes are consistently lower at  all s t r e s s  
levels and are in all cases  highest at the highest s t r e s s  level. 
of two in the standard deviations, by which the STF and LTF modes a r e  
separated is the most convincing evidence that the endurances represent 
a single distribution with two modes, o r  a bimodal distribution. 

It is seen that the standard 

The factor 

V. CONCLUDING RE MARKS 

The axial-load fatigue endurance distributions of annealed OFHC 
copper specimens with a cold-worked surface layer,  tested at  four s t r e s s  
levels under constant-amplitude tension-compression, form the basis 
for the following observations : 

1. 
butions is indicated by three features of these distributions: 

Evidence for the existance of two modes in the endurance distri-  

(a) The apparent bimodality in the endurance histograms. 
(b) The significantly and consistently different values at  all 
s t ress  levels for the standard deviations of the STF and LTF 
modes respectively. 
(c) The consistent variations in the STF parameters obtained by 
the maximum likelihood truncation method. 

1 2  



Further refinements of the analysis leading to the estimation of 
the parameters of the underlying component distributions (e. g. the method 
of maximum likelihood being applied to the data where the underlying 
distribution is assumed to be composed of (STF) log-normal component 
and (LTF) Weibull component are possible, but would not remove the 
ambiguity in the identification of the endurances in the overlap region. 

Earl ier  observations in the l i terature of the bimodal phenomenon 
with two well-separated component distributions may possibly be explained 
by the fact that the materials involved were alloys, while in the present 
investigation a pure metal was tested. This difference is worthy of further 
investigation. 

2. 
level, decreasing with decreasing stress amplitude. 

The overall standard deviation w a s  largest  for the highest s t r e s s  

3. Using the correlation coefficient as criterion for the "goodness 
of fit ' '  of the distribution functions to the test  data in addition to a visual 
comparison of the probability plots, the following conclusion can be drawn: 

(a) Single Weibull (Extreme Value) distribution functions, with 
the parameters  calculated by the upper vertical moment method 
in all cases  fitted the test  data better than log-normal functions. 
(b) Log-normal distribution functions, due to the apparent 
symmetry of the STF modes of the tes t  data gave the expected 
good f i t ,  but the 
(c) L T F  modes could be represented best by Weibull distribution 
functions. 
(d) The best estimates of the parameters  for the Weibull distri-  
bution functions w e r e  obtained by the method of upper vertical 
moments. 
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1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14  
15 
16 
17 
18 
19 
20 
2 1  
22 
23 
24 
25 
26 
27 
28 
29 
30 
31  
32 
33 
34 
35 
36 
37 
38 
39 
40 
4 1  
42 
43 
44 
45 

RANKED FATIGUE ENDURANCES 

(CYCLES TO FAILURE) x 

Rank 12. 7 ksi 13.0 k s i  14.0 k s i  16.5 ks i  
0.1224 0.7737 0.8215 0. 3016 

0.8096 
0.8167 
0.9244 
0.9344 
0.9533 
0.9542 
0.9687 
0,9860 
1.0017 
1.0300 
1,0389 
11.0520 
1.0743 
1.0943 
1.1010 
1. 1113 
1. 1403 
1. 1522 
1. 1527 
1. 1632 
1. 1782 
1. 1887 
1.2067 
1.2255 
1.2360 
1.2606 
1.2618 
1.2638 
1.2640 
1.2662 
1.2738 
1.2868 
1. 3015 
1. 3019 
1. 3062 
1. 3168 
1. 3253 
1. 3267 
1. 3322 
1. 3364 
1. 3427 
1. 3467 
1.3594 
1. 3749 

0.8426 
0.8427 
0.8476 
0.9172 
0.9210 
0.9220 
0.9225 
0.9328 
0.9474 
0.9481 
0.9674 
0.9746 
0.9771 
0.9779 
0.9786 
0.9830 
0.9884 
0.9891 
0.9936 
1.0096 
1.0104 
1.0106 
1.0109 
1.0142 
1.0159 
1.0184 
1.0221 
1.0227 
1.0240 
1.1310 
1.0316 
1.0386 
1.0443 
1,0479 
1.0533 
1.0594 
1.1612 
1.0636 
1.0662 
1.0663 
1.0923 
1.1013 
1.1020 
1.1038 

0. 3168 
0. 3231 
0. 3260 
0. 3289 
0. 3310 
0. 3330 
0.3343 
0. 3370 
0. 3420 
0. 3460 
0.3478 
0.3479 
0.3494 
0. 3513 
0. 3536 
0. 3560 
0. 3568 
0. 3606 
0. 3610 
0.3631 
0. 3704 
0. 3710 
0.3743 
0.3744 
0.3755 
0. 3768 
0. 3770 
0. 3790 
0.3795 
0.3801 
0. 3822 
0. 3823 
0.3826 
0.3840 
0.3856 
0.3872 
0. 3876 
0.3910 
0. 3918 
0. 3919 
0. 3925 
0.4070 
0.4070 
0.4073 

0.1245 
0. 1274 
0.1306 
0.1308 
0. 1322 
0.1347 
0. 1366 
0.1385 
0. 1399 
0.1409 
0.1413 
0. 1434 
0.1436 
0.1457 
0.1464 
0.1484 
0.1490 
0.1493 
0. 1520 
0. 1521 
0.1531 
0. 1549 
0. 1550 
0.1555 
0.1576 
0.1583 
0. 1585 
0.1598 
0.1602 
0. 1602 
0.1605 
0.1607 
0.1608 
0.1610 
0,1619 
0.1631 
0.1679 
0.1688 
0.1696 
0.1720 
0.1723 
0.1737 
0.1745 
0.1746 



TABLE I1 - continued 

Rank 12.7 ks i  13. 0 ks i  14.0 k s i  16. 5 ks i  

46 
47 
48 
49 
50 
5 1  
52 
53 
54  
55 
56 
57 
58 
59 
60 
6 1  
62 
63 
64 
65 
66 
67 
68 
69 
70 
7 1  
72 
73  
7 4  
75 
76 
77 
78 
79 
80 
8 1  
82 
83 
84  
85 
86 
87 
88 
89 
90 
9 1  
92 
9 3  

1. 3785 
1.3793 
1.4024 
1.4035 
1.4095 
1.4133 
1.4135 
1.4143 
1.4163 
1.4348 
1.4381 
1.4503 
1.4510 
1.4544 
1.4564 
1.4572 
1.4606 
1.4625 
1.4638 
1.4751 
1.4813 
1.4815 
1.4872 
1.4903 
1.4977 
1. 5210 
1. 5238 
1.5299 
1.5393 
1. 5396 
1.5439 
1. 5518 
1.5549 
1.5570 
1.5576 
1.5722 
1.5773 
1.5794 
1.5803 
1.5847 
1.5871 
1.5950 
1. 5952 
1. 6030 
1. 6062 
1.6140 
1.6149 
1.6160 

1.1070 
1.1130 
1.1208 
1.1208 
1.1428 
1.1724 
1.1759 
1.1773 
1.1850 
1.1990 
1,2013 
1.2096 
1.2143 
1.2211 
1.2251 
1.2264 
1.2289 
1.2296 
1.2633 
1.2662 
1.2692 
1.2719 
1.2761 
1.2766 
1.2854 
1.2882 
1.2889 
1,2943 
1.2957 
1.30$4 
1.3024 
1. 3032 
1.3124 
1. 3212 
3 .  3259 
1.3300 
1.3372 
1.3389 
1. 3392 
1.342q 
1.3461 
1.3464 
1.3472 
1.3474 

. 1.3500 
1. 3602 
1.3609 
1. 3629 

0.4093 
0.4120 
0.4121 
0.4160 
0.4237 
0.4243 
0.4280 
0.4296 
0.4350 
0.4377 
0.4380 
0.4390 
0.4437 
0.4464 
0.4470 
0.4474 
0.4490 
0.4504 
0.4517 
0.4530 
0.4544 
0.4552 
0.4557 
0.4580 
0.4596 
0.4630 
0.4632 
0.4660 
0.4674 
0.4702 
0.4715 
0.4727 
0.4733 
0.4762 
0.4766 
0.4766 
0.4778 
0.4810 
0.4832 
0,4847 
0.4860 
0.4913 
0. 4938 
0.4974 
0. 5004 
0.5035 
0.5046 
0.5053 

0.1747 
0.1757 
0. 1758 
0.1767 
0. 1767 
0.1768 
0.1790 
0.1795 
0.1799 
0.1806 
0.1815 
0.1818 
0.1822 
0.1835 
0.1836 
0.1839 
0.1862 
0.1864 
0.1866 
0.1868 
0.1870 
0.1881 
0.1889 
0.1902 
0.1907 
0.1908 
0.1912 
0.1930 
0.1933 
0.1935 
0.1935 
0.1941 
0.1942 
0.1947 
0.1948 
0.1951 
0. 1980 
0.1985 
0.1992 
0.2001 
0.2009 
0.2019 
0.2019 
0.2029 
0.2036 
0.2041 
0.2049 
0.2057 



TABLE I1 - continued 

Rank 

94  
95 
96 
97 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131  
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 

12. 7 ksi  

1. 6210 
1.6231 
1. 6232 
1.6256 
1. 6332 
1.6464 
1. 6497 
1. 6499 
1.6580 
1. 6625 
1. 6741 
1. 6813 
1.6872 
1. 6971 
1. 6990 
1.6992 
1.6995 
1.7215 
1.7236 
1.7305 
1.7359 
1,7551 
1.7578 
1.7610 
1.7762 
1.7873 
1.7882 
1.7940 
1.8044 
1.8105 
1. 8473 
1.8695 
1.8712 
1.8809 
1.8874 
1.8992 
1.9152 
1.9172 
1.9347 
1.9484 
1.9485 
1.9604 
1.9612 
2,0026 
2.0171 
2.0387 
2.0979 
2.112 

13.0 ksi  14. 0 ks i  16. 5 ksi  

1.3795 
1. 3836 
1.3910 
1.3955 
1.3988 
1.4100 
1.4119 
1.4212 
1.4218 
1.4247 
1.4469 
1.4550 
1.4713 
1.4794 
1.4815 
1.4870 
1.4970 
1.4990 
1.5017 
1.5100 
1.5138 
1.5223 
1.5351 
1.5462 
1.5619 
1.5620 
1.5644 
1.5788 
1.5819 
1.5843 
1.5873 
1.5874 
1.5876 
1.5903 
1.6201 
1.6300 
1.6361 
1.6532 
1.6550 
1.6786 
1.7536 
1.7651 
1.7798 
1.7825 
1.7846 
1.8028 
1.8279 
1.8472 

0.5066 
0.5082 
0.5112 
0.5139 
0.5155 
0. 5180 
0.5290 
0.5293 
0. 5320 
0.5340 
0. 5370 
0.5500 
0.5501 
0.5546 
0.5549 
0. 5690 
0. 5796 
0. 5830 
0.5997 
0. 6040 
0.6050 
0.6114 
0.6120 
0.6279 
0.6285 
0. 6302 
0. 6332 
0.6419 
0.6488 
0.6600 
0.6682 
0.6901 
0. 6940 
0.7155 
0.7500 
0.7524 
0.7802 
0.7856 
0.8179 
0.8370 

0.2065 
0.2065 
0.2067 
0.2067 
0.2068 
0.2078 
0.2083 
0.2083 
0.2087 
0.2106 
0.2110 
0.2113 
0.2114 
0.2127 
0.2137 
0.2145 
0.2152 
0.2158 
0.2165 
0.2166 
0.2170 
0.2171 
0.2171 
0.2178 
0.2178 
0.2189 
0.2198 
0.2205 
0.2235 
0.2236 
0.2241 
0.2245 
0.2245 
0.2249 
0.2253 
0.2263 
0.2289 
0.2329 
0.2355 
0.2358 
0.2360 
0.2365 
0.2371 
0.2382 
0.2392 
0.2392 
0.2399 
0.2400 



TABLE I1 - continued 

Rank 12.7 k s i  13. 0 k s i  14.0 k s i  16. 5 k s i  

142 
143 
144 
145 
146 
147 
148 
149 
150 
1 5 1  
152 
153 
154 
155 
156 
157 
158 
159 
160 
1 6 1  
162 
163 
164 
165 
166 
167 
168 
169 
170 
171  
172 
173 
174 
175 
176 
177 
178 
179 
180 
181  
182 
183 
184 
185 
186 
187 
188 
i 89 

2. 1277 
2. 1348 
2.2018 
2.2047 
2.2103 
2.2226 
2.2856 
2. 3502 
2.4582 

1.9292 
1.9722 
1.9999 
2.0782 
2.0953 
2.1954 
2.3850 

0.2402 
0.2406 
0.2407 
0.2453 
0.2467 
0.2467 
0.2485 
0.2493 
0.2505 
0.2514 
0.2530 
0.2533 
0.2542 
0.2546 
0.2559 
0.2565 
0.2566 
0.2572 
0.2586 
0.2608 
0.2625 
0.2632 
0.2638 
0.2639 
0.2648 
0.2656 
0.2675 
0.2712 
0.2722 
0.2745 
0.2751 
0.2754 
0.2768 
0.2779 
0.2781 
0.2800 
0.2802 
0.2851 
0.2874 
0.2877 
0.2897 
0.2919 
0.2927 
0.2931 
0.2935 
0.2944 
0. 3005 
0. 3011 



TABLE I1 - continued 

Rank 12.7 ksi  13.0 ksi  14.0 ks i  16. 5 ks i  

190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 

0.3020 
0.3024 
0. 3131 
0. 3141 
0. 3145 
0. 3266 
0. 3318 
0. 3385 
0. 3440 
0.3453 
0. 3618 

TABLE I11 

PARAMETERS O F  SINGLE LOG-NORMAL DISTRIBUTION 

12.7 ksi  13.0 ks i  14. 0 ks i  16. 5 ksi  

- 
Mean of log (N), x 6. 17725 6.10949 5.66479 5. 32034 
Standard deviation, s 0.099334 0.095913 0.099089 0. 102987 
Coreelation coeff., r 0.99044 0.99330 0.98726 0.99668 

TABLE IV 

PARAMETERS O F  SINGLE WEIBULL DISTRIBUTION 

(CLASSICAL MOMENT METHOD) 

12.7 ksi  13.0 ks i  14.0 ks i  16. 5 ks i  

Shape parameter, b 2.53 1. 76 1.525 2.28 
Minimum life, No 0.62529 0.8046 0. 303241 0.105766 

Characteristic life , V 1.64879 1. 38228 0.493641 0.2291 14 

Correlation coefficient, r 0. 99554 0.99195 0.96932 0.99654 

(mill. cycles) 

(mill, cycles) 



TABLE V 

PARAMETERS OF SINGLE WEIBULL DISTRIBUTION 
(UPPER VERTICAL MOMENT METHOD) 

12.7 ks i  13. 0 ks i  14. 0 ksi  16. 5 ksi  

Shape parameter, b 3.135 1.819 1.438 2.138 
Minimum life, No 0.59015 0.79284 0. 31089 0.11089 

Characteristic life, V 1.65184 1. 38605 0.49197 0.22850 

Correlation coefficient, r 0.99649 0.99371 0.99504 0.99828 

(mill. cycles) 

(mill. cycles) 

TABLE VI 

PARAMETERS OF THE LOG-NORMAL STF COMPONENT DISTRIBUTION 

12. 7 ks i  13.0 k s i  14.0 ksi  16. 5 k s i  

MEANlife, 5.9726 6.0080 5.5715 5.1868 
Stand. deviation, s 0.04032 0.03925 0.03835 0.04750 
No. of specimens in STF 14  42 43 38 

Correlation coefficient , r 0.98419 0.98088 0.9894 
component 

TABLE VI1 

PARAMETERS OF THE WEIBULL L T F  COMPONENT DISTRIBUTiON 

12. 7 ks i  13.0 ksi  14.0 ks i  16. 5 ksi  

Shape parameter, b 1.827 1.444 1.068 1.625 
Minimum life, No 1.084 1.086 0.417 0.158 

Characteristic life, V 1.648 1.486 0.541 0.238 

Mean of N, m 1.607 1.447 0.538 0.226 

Mean of log (N), 6.1994 6.1543 5.7241 5. 3462 
Stand. dev. of log (N) 0.07429 0.07203 0.07508 0.08440 
Correlation coeff., r 0.99837 0.98527 0.99096 0.99584 
Estimated no. of specimens 
in L T F  component distri-  
bution (no. of spec. having 
N = N O  ) 136 107 84 165 
Percent L T F  of total 90. 6 71. 0 62. 4 82. 5 

(mill. cycles) 

(mill. cycles) 

(mill. cycles) 



APPENDIX A 

The One-sided Truncated Log-Normal Distribution 

If, in a given distribution the number and corresponding values 
of the observations below (or above) a certain value, the truncation point 
are known, the distribution is said to  be truncated. If the number of the 
observations of unspecified values is known the distribution is called cen- 
sored. If, however, the two parameters x and s2 of the normal distribu- 
tion are known the probabilities can be calculated at any point in the distri- 
bution. The parameters may be estimated by the method of maximum 
likelihood. Hald has in Ref. 18 given the procedure for estimating the 
parameters  of a one-sided truncated distribution in which the truncation 
point and the values above that point a r e  known. 

The point of truncation is taken as origin, i. e. if X1, X2,  . . . . 
. . Xn are the observed endurances then xi = Xi - Xtr is the variable 
(Xtr is the truncation point). 

The procedure is first to calculate * 
Y =  (A. 1) 

From Table I in Ref. 18 an estimate of the standardised point of truncation 
z, is found as z = f(y). 

Using Table I1 to find g(z), we further compute the estimate of the standard 
deviation as 

and the estimate of the mean is 
- 
x =  - z s  (A. 3) 

The degree of truncation (the percentage of unknown observations in the 
population) is P(z) where P is the cumulative normal distribution function 
in the Notation. 

The above method is directly applicable whether the known ob- 
servations a r e  above o r  below the point of truncation, provided the require- 
ment x > 0 is satisfied. 

A1 



APPENDIX B 

The Weibull (Extreme Value) Distribution 

Assuming that in a large group of specimens tested at the same 
s t r e s s  amplitude and subjected to a number N of load cycles, the specimen 
that actually fails at  this number is necessarily the weakest specimen, 
one may consider those specimens failing at the lowest number of cycles 
as forming a group of the weakest specimens within the population from 
which the sample is drawn. The theory of extreme values may therefore 
be applied to the distribution of N. 

The theory of extreme values leads to the following probability 

~1 (N) = 1 - exp [ - ( N / v ) ~ ]  

distribution function (Ref. 13) : 

(B. 1) 

with boundary conditions 

i. e. the probability of survival approaches 100% as N approaches zero, 
and approaches zero as N approaches infinity. 

It is well known that fatigue, for virgin specimens, is a gradual 
(consecutive) chain of developments. 
damaging process in the early stages can be either directly reversible 
(e. g. "annealing out damage") o r  indirectly reversible (e. g. localized 
damage inhibited by hardening of the surrounding matrix) thus yielding a 
"healing effect. 

It has also been found that the 

On this basis it is reasonable to assume a lower bound, No, for 
the endurance N below which no failure can occur. This leads to the 
following modification of the probability distribution function given in 
Eq. (B. 1). 

The parameters No  (the "minimum life") and V (the'bharacteristic life") 
are defined by the probabilities 

F (N f No) = 0 

F ( V )  = l / e  
and 

The frequency distribution function associated with F ( N )  is 



Using the method of moments due to Weibull (Ref. 14), Freudenthal and 
Gumbel have in Ref. 13 given a method for calculating the three parameters 
N ~ ,  b and V directly without iteration procedures. 

According to Ref. 13, the shape parameter b is defined by the 

4 q - :  skewness 'I, 1 1  

f i  = [r(/ + %) - 3 r ( / +  

The skewness is given by the third 
deviation 6 a s  

is estimated by 

0- - 3  

the sample value 

and b is then calculated from Eq. (B. 6). 

The sample standard deviation s is obtained by the usual formula 

The characteristic life V is given by 

V = N + A(b) (B. 10) 

and the minimum life No by 

No = V - O- B(b) (B. 11) 

where 

and 

(B. 13) 

Replacing the population standard deviation with the sample value s, 
and using the previously obtained value of b, A(b) and B(b) can be calcu- 
lated with the u s e  of tables of the gamma function. V and No are then 
calculated from Eqs. B. 10 and B. 11. 

In the derivation of the above equations the classical method of 
moments of Weibull (Refs. 14 and 15) was  used. To distinguish it f rom 
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the method of upper vertical moments (Appendix C), the above method wil l  
hereafter be referred to as "the classical moment method". 
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APPENDIX C 

The Truncated Weibull (Extreme Value) Distribution 

Weibull (Ref. 16) has given a method for calculating the para-  
me te r s  of complete, cencored and truncated distributions by the method 
of upper vertical moments. 

The upper vertical moment of order r is defined by 

wh re /1 is thecomplete gamma-function, I L L r ,  / b  -1dis an integral 
introduced and tabulated by Pearson (Ref. 17). The integral is defined as 

U r  is given by 

and 
Pr = 1 - (1-P)r 

Since for a complete distribution 

and since 

Eqs. C. 3 take the simpler form 

c1 



Taking the same degree of truncation, (l-Pt), for each of Eq. (C. 3), Eq. 
(C. 5)  shows that u1 = u2 = u4. It then follows that 

from which the shape parameter b is obtained as 

The first equation of Eq. (C. 3) then gives 
- 

(C. 10) 

(C. 11) 

(C. 12) 

An estimate of the moment xr can be obtained from 

and Pi is the plotting position. 

While the three parameters in the case of a complete distribu- 
tion may be calculated by the use of Tables of the gamma function and 
Pearson's integral from Eqs. (C. 9) and Eq. (C. 13) using Eq. (C. 14) to 
estimate the moments, it is simpler to use Eq. (C. 11) and (C. 12) to ob- 
tain b and No. By a suitable transformation of Eq. (C. 21, V can be cal- 
culated by regression analysis. 

Linearising Eq. (C. 2) by taking'the natural logarithm of both 
sides, we get 

i 
1 )lib - - N - N o  

In ( - 
1 - P  V-No 

and, introducing 
. l / b  

z =  I n (  - l ) .  
1 -P 

c2 

(C. 16) 

(C. 17) 



N = No + z (V-No) (C. 18) 

Regression by the method of least squares now gives 

Eqs. (C. 11) and (C. 12) a r e  independent of the degree of truncation and 
are thus valid for complete as we l l  as for censored or  truncated distribu- 
tions. Another advantage of using Eqs. (C. ll), (C. 12) and (C. 19) is that 
they are particularly suited for computation by electronic digital computers. 



APPENDIX D 

Linear Re gre s s ion Analysis 

. 

The t e rm regression analysis is used for the statistical analysis 
of the association between two (or more) variables. 
cation is to f i t  a straight line to a set  of experimental data points. 
method is to minimize the sum of the squares of the deviations of the data 
points from the line to be fitted to thepoints. 
meters  for the line obtained by this method a r e  "best" in the sense that 
they are normally distributed w i t h  the parameters  a s  mean values and with 
least  possible variances (Ref.  19). 
normally distributed and their variance constant. With these assumptions 
the method of least  squares is equivalent to the method of maximum likeli- 
hood (Ref. 22). The method of linear estimators (Ref. 12),  in which the 
basic assumptions a r e  more general (e. g. normality of the distribution of 
the dependent variable is not assumed), leads to exactly the same estimates 
of the parameters. 

An important appli- 
One 

The estimate of the para-  

The deviations are assumed to be 

In fitting a linear equation 

to the set  of experimental points(xi - yi) the parameters  M, xo and yo have 
to be determined. 
(xo, yo), the least squares method gives the following estimates of the 
par  ame t e r s . 

If there a re  no requirements concerning the point 

- 
xo = x i. e. the mean of xi - 
Yo = Y i. e. the mean of yi  

(Expressions for and 7 are found in the Notation). 

The slope of the 

- 
ML - 

The correlation 

regression line is then given by 
n n n n 

(D. 2) 

(D. 3) 

i= 1 i= 1 i= 1 

coefficient, r, characterizes the dependence between the 
variables x and y, i. e. in the case of fitting a straight line to experimental 
points, r is an overall measure of how well the points f i t  the regression 
line. r is the ratio between the covariance, sxy, and the produce of the 
standard deviations of the two variables (see Notation), and is thus given 

n - 
i= 1 i= 1 
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The values r may assume are in the range 

For r = +I, - all points lie on the line indicating a complete correlation. 
r = 0 there is no correlation, Le. the variables a r e  stochastically inde- 
pendent. The theory for the correlation coefficient is only valid i f  the 
e r r o r s  are normally distributed (Ref. 19), and the interpretation of r is 
very uncertain i f  this requirement is not satisfied. 
on the probability plots (Section 4),  the assumption of normally distributed 
variables seems to hold; visual comparisons show that the best fit to the 
regression line is in all cases  coincident with the highest correlation co- 
efficient s. 

For 

In the case of regression 

Linear regression analysis is directly applicable to a function 
linearized by any arbi t rary transformation provided the variance of the 
transformed dependent variable is constant. 
ation this is a rather dubious assumption and some bias in the estimates 
may result. 

For a logarithmic transform- 

In this work regression analysis has been used to f i t  a straight 
line to the plots of the endurances on probability paper. 
pofiition is of some importance since biased estimates of the parameters 
may result i f  a poor choice of plotting position is made, especially if the 
sample is small. 

The choice of plotting 

The most used plotting positions are 

and 
p = i / (n+l) 

An improved plotting position is given by Blom (Ref. 20) as 

( o - L d , P &  1) 
i- d 

n - d +  B + 1  
P =  (D. 7) 

where d and are  chosen with regard to the distribution. For a normal 
distribution the plotting position 

P =  ( i  - 3 / 8 1  / ( n +  1 /4 )  (D. 8) 

gives a nearly unbiased estimate of the variance (Ref. 12). 

F o r  large numbers of observations, say n 2 1 0 0 ,  the difference 
between the various plotting positions is negligible. 
the plotting relation given by Eq. (D. 8) w a s  used for all plots. In the 
regression analysis of the Weibull distribution, however, the plotting 
position (D. 6) was tried. 
obtained using (D. 8). 

For practical purposes 

The results did not differ significantly from those 

D2 



APPENDIX E 

Stresses in the Fatigue Specimen Due to Grip Misalignment 

During final assembly of the machine a straingauged steel 
specimen (see Section 2. 5)  was used to ensure grip alignment. 
found, however, that the s t ress  in this specimen could not be completely 
eliminated, and the following calculations were carr ied out to asses the 
magnitude of the s t resses  in the fatigue specimen caused by the grip mis-  
alignment. The procedure is to use the strain readings obtained f rom the 
alignment specimen to  calculate the angular and translational displacement 
of the grips with respect to each other and use  these values to compute 
the stresses in the fatigue specimen. 

It w a s  

The deformation of the specimen caused by grip misalignment 
can be split into the two following components: 

a) A translational displacement, i. e. the centre lines of the 
gripped ends of the specimen remain parallel, but a r e  displaced 
a distance 5 . 
b) An angular or rotational displacement, i. e. the gripped ends 
are rotated through an angle o( , but a r e  not displaced other- 
wise.  

In the first case the deformation and the resulting bending moment diagram 
a r e  a s  shown in the following sketch 

The relation between the displacement d and the maximum value of the 

. bending moment is (Ref. 23); 

6 E I J  
M t =  z 4 (E. 1) 

Pure  angular displacement gives r i s e  to  the following deformation and 
moment diagram (considering the top end as a reference) 

E l  



F d b 
Ma 

The value of the bending moment at the lower end is (Ref. 23): 

- 6 E I d  
1 M a -  - 

In the general case, when there is a combination of the two deformations, 
the deformation and the moment diagram are: 

T 
M1 

The moments Mt, Ma and M1 and M2 a re  related as follows 

M2 =-% + Ma 

or  

(E. 3a) 

(E. 3b) 

The strain readings can be used to calculate Mland M2,, but not 
directly since the gauges w e r e  located at a distance from the ends. 
sketch shows how the moments at the gauges, Miand M i ,  and the end 
moments MI and M2 a r e  related. 

The 

4 
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Simple geometrical considerations lead to the following expressions for 
the end moments 

Using the well -known equations E =  - 68 
€ 

the bending moment at the gauges may be expressed as 
0 

M I =  6 E Z  

or, using the previous notation 

M i =  c , E Z  / 

I I (E. 5) 

The readings of the bending strains were obtained by clamping 
the specimen in the grips, adjusting the mean s t r e s s  spring and the upper 
head until there w a s  no axial load in the specimen, and take one set  of 
readings from all gauge pairs. 
degrees, clamped again and a new set of readings taken. 
peated until the specimen w a s  rotated through 360 degrees and four sets  
of readings obtained. 
e r r o r s  due to initial curvature of the alignment specimen. Although the 
time between alignment checks w a s  up to three months no significant 
changes were found. 

Then the specimen w a s  released, rotated 90 
This w a s  r e -  

The readings were taken in this manner to avoid 

In the last check the following average readings were obtained: 

Long. plane Transverse plane 
Top end + 32 + 3  

Bottom end - 60 + 3  

The readings a re  in microinch p e r  inch ( in. /in. ) For 
bending in the longitudinal plane, the minus sign occurs when the surface 
strain at the front of the specimen is tensile. 
in the transverse plane a re  very small  compared to those in the longitudinal 
plane, only bending in the latter plane need be considered. 

Since the bending strains 
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The two gauges on opposite faces at each c ross  section were 
wired in adjacent a r m s  in a Wheatstone bridge, giving readings of twice 
the actual strain. Therefore, the actual strains a r e  

1 

E = + 32/2 = 1 6 p  in. /in. 

E = - 60/2 = 3 0 p  in. /in. 
1 

2 
Eq. (E. 5) gives the bending moments at the gauges: 

I 

M1 = 27. 3 lb. in. 

M2 =-5 1. 4 lb. in. 
1 

The end moments Ml and M2 are then computed, using Eq. (E. 4): 

MI = 53. 5 lb. in. 

M =-81. 6 lb. in. 2 

Using Eq. (E. 3b) the "translational" and "angular" moments a r e  calcu- 
lated: 

Mt = 25. 4 lb. in. 

Ma =-56. 2 lb. in. 

The translational displacement of one grip with respect to the other is then 
(from Eq. (E. 1) ): 

5 = 0.79 x 10-4 in. 

The angular displacement is given by Eq. (E. 2) 

& = - 0.55 x radians 

The moments in the fatigue specimen caused by these displacements a re  
found by equating the expressions for the displacements for the two speci- 
mens. 
specimen by subscript f, then 

Denoting the alignment specimen by subscript a and the fatigue 

i. e. 
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and similarly 

Substituting the numerical values for E, I and 1 we get 

Mtf = 1. 99 lb. in. 

Maf = -1. 57 lb. in. 

Eq. A. 3 now gives the moments at the ends of the test  section 

Mlf = 2. 78 lb. in. 

MZf = -3. 56 lb. in. 

The s t resses  at the upper and lower end of the test  section of the fatigue 
specimen may now be calculated using the usua l  formula for the bending 
s t r e s s  at the surface, viz. 

M 
Z G B =  - 

Thus we obtain 

CJ- = 1160psi  
B1 

6,, = -1490 p s i  

Since the minus sign indicates tensile s t r e s s  at the front of the specimen, 
the maximum tensile surface s t ress  is at the lower front fillet. 
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APPENDIX F 

Temperature Increase in the Fatigue Specimens During the Test 

In fatigue tes ts  conducted at room temperatures it is usually 
assumed that the temperature rise in the test  piece is constant for all 
s t r e s s  amplitudes o r  so  small that it can be neglected. This r-ay not 
always be true; in some cases the temperatures developed in the specimen 
at  high s t r e s s  amplitudes a re  so high that a S-N curve determined from 
such tes ts  is based on endurances which have actually been measured at 
different temperatures. 

The temperature rise is a measure of the energy dissipated 
during fatiguing of the specimen, i. e. it is a measure of the width of the 
hysteresis loop. 
however, the stored energy is a small fraction of the total energy. 
number of factors such a s  internal damping, heat transfer properties of 
the material, s t r e s s  distribution and frequency and amplitude of the applied 
load determine the temperature rise. 

Some energy is stored during the fatigue process (Ref. 24) 
A 

Energy dissipation in the specimen may be measured in two 
ways: by measuring the amount of heat produced, e. g. by attaching a 
thermocouple to the specimen, o r  by measuring the damping in the specimen. 
Since the second method is less direct and has the disadvantage that the 
measured energy loss  in most cases  would include energy lost in the grips, 
etc., the thermocouple method w a s  preferred. 

To ensure good heat conduction the thermocouple w a s  soldered 
to a piece of thin copper sheet, curved to f i t  the waisted part  of the speci- 
men. The copper piece and the thermocouple w e r e  covered with a 1 / 1 6  in. 
layer  of plastic to minimize heat loss to the air. 
grease was  used to further enhance heat transfer to the thermocouple. 
reference thermocouple was attached to the machine structure (assumed 
to  remain at room temperature throughout the test), so that the active 
thermocouple only recorded temperatures above the room temperature. 
The temperature w a s  recorded continuously during the test  but because 
the virgin specimens were very soft the energy loss w a s  large in the be- 
ginning of the test  and ful l  operating s t r e s s  was not reached until about 
4000 cycles, therefore the readings before this number of cycles a re  not 
included. 
of cycles is plotted in Fig. 18 for typical specimens from the four s t r e s s  
levels. 

A heat-conducting 
The 

The temperature increase (above room temperature) vs. number 

The curves for the specimens tested at the two lowest stress 
amplitudes, 12.7 ks i  and 13.0 ksi,  show that once the initial hardening 
w a s  over, the amount of dissipated energy remained small  during the 
greater par t  of the test  with a small increase toward the end. 
dissipated in the specimens tested at the higher stresses, 16.5 ksi  and 
14.0 ksi, increased steadily during the test, indicating a continuing 

The energy 
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widening of the hysteresis loop. 
Since most of the energy is dissipated in slip zones, the observed temper- 
ature increase is a measure of the severity of the slip. This is confirmed 
bythe metallographic examination of the failed specimens in Ref. 8, which 
showed that gross deformation took place with the grains breaking up into 
cells (H-type fatigue damage) at the highest s t ress ,  while at the lowest 
s t r e s s  damage was confined to slip bands (F-type fatigue damage). 

The same trend is reported in Ref. 25. 

The relatively small amounts of heat developed in the specimens 
(the maximum temperature above the room temperature was about 17 deg. 
F) leads to the assumption that the heating of the specimen had little or no 
effect on the observed fatigue endurances. 
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FIG. 1 TYPICAL TRANSVERSE SECTION OF SPECIMEN 
BEFORE TESTING. ASTM GRAIN SIZE NO. 8 (x 100) 
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FIG. 2 THE COPPER (OFHC) FATIGUE SPECIMEN 
+ 
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FIG. 3 THE FATIGUE MACHINE (SCHEMATIC). 



MING LEMGTE O F  TEST 

FIG.  4 THE FATIGUE MACHINE WITH INSTRUMENTS 
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F I G .  5 (a) F R O N T  VIEW OF T H E  FATIGUE MACHINE 
SHOWING GRIPPING HEADS 
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- - - - - * -  CLASSICAL MOMENT 
METHOD 

U P P E R  VERTICAL 
MOMENT METHOD 
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FIG. 14 (a) PARAMETERS OF THE TRUNCATED LOG-NORMAL DISTRIBUTION. 
HIGH-ENDURANCE PART EXCLUDED. 
12.7 KSI A X E  i6.5 KSI STZESS LEVELS 
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FIG. 14 (b) PARAMETERS OF THE TRUNCATED LOG-NORMAL DISTRIBUTION. 
HIGH-ENDURANCE PART EXCLUDED. 
1 3 . 0  KSI AND 14.0 KSI STRESS LEVELS 
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FIG. 15 (a) PARAMETERS OF THE TRUNCATED LOG-NORMAL DISTRIBUTION. 
LOW-ENDURANCE PART EXCLUDED. 
13.0 KSI STRESS L E V E L  
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FIG. 15 (b) PARAMETERS OF THE TRUNCATED LOG-NORMAL DISTRIBUTION. 

14.0 KSI STRESS LEVEL 
LOW-ENDURANCE PART EXCLUDED. 
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